Strange vision: ganglion cells as circadian photoreceptors

David M. Berson

Department of Neuroscience, Brown University, Providence, RI 02912, USA

A novel photoreceptor of the mammalian retina has recently been discovered and characterized. The novel cells differ radically from the classical rod and cone photoreceptors. They use a unique photopigment, most probably melanopsin. They have lower sensitivity and spatiotemporal resolution than rods or cones and they seem specialized to encode ambient light intensity. Most surprisingly, they are ganglion cells and, thus, communicate directly with the brain. These intrinsically photosensitive retinal ganglion cells (ipRGCs) help to synchronize circadian rhythms with the solar day. They also contribute to the pupillary light reflex and other behavioral and physiological responses to environmental illumination.

For 150 years, rods and cones have been considered the only photoreceptors of the mammalian eye. For more than a decade, however, evidence has been mounting for the existence of other ocular photoreceptors. A flurry of recent reports has now established the identity of these novel retinal photoreceptors and has begun to delineate their photochemistry, anatomy, functional attributes and roles in behavior. This review surveys the emergent evidence for this remarkable retinal subsystem, and for its roles in synchronizing circadian rhythms and in other physiological responses to environmental illumination.

Synchronization of circadian rhythms

The roots of this discovery lie in the field of circadian physiology. Circadian rhythms are biological cycles that have period of about a day. Body temperature, hormonal levels, sleep, cognitive performance and countless other physiological variables exhibit such daily oscillations. In mammals, a pacemaker in the hypothalamus called the suprachiasmatic nucleus (SCN) drives these rhythms [1]. Lesions of the SCN abolish circadian rhythms and SCN grafts can restore rhythms in arrhythmic hosts. The SCN is a self-sustaining oscillator, able to maintain daily rhythms for weeks when isolated and cultured. The clockwork of SCN neurons consists of interlocking feedback loops of gene expression [2–4].

Because the intrinsic period of the SCN oscillator is not exactly 24 h, it drifts out of phase with the solar day unless synchronized or ‘entrained’ by sensory inputs. Light is by far the most important entraining cue. When we experience a sudden change in light cycle, as in air travel to a new time zone, we suffer an unpleasant mismatch between our biological rhythms and local solar time (‘jet lag’). Normal synchrony is restored over several days as the rising and setting of the sun resets our biological clock [2,5,6].

Behavioral evidence for novel ocular photoreceptors

In mammals, light adjusts circadian phase by activating the retinohypothalamic tract, a direct pathway linking a small population of retinal ganglion cells (RGCs) to the SCN [5,7–12]. In the conventional view of retinal organization, these RGCs, like all others, would derive their visual responsiveness solely from synaptic inputs and, ultimately, from the classical photoreceptors. According to this view, rods and/or cones would be the photoreceptors through which light influenced circadian phase. Beginning in the 1980s, however, behavioral studies, especially those of Foster and colleagues, began to challenge this model [13]. Photic entrainment exhibited high thresholds, low-pass temporal filtering and long-term temporal integration that seemed difficult to reconcile with a mechanism based purely on rods or cones [14–18]. And, remarkably, in mice with severe degeneration of classical photoreceptors, light was as effective as in normal mice at resetting the circadian clock [19–21]. This is also true in certain blind humans [22]. Initial studies left open the possibility that a few surviving rods or cones might have accounted for the persistent photoentrainment, but improved experimental models have since laid that concern to rest [23,24].

Could the photoreceptors supporting photoentrainment in rodless and coneless mice be located outside the eye? A clear precedent for such a mechanism exists in non-mammalian animals, in which light penetrating the brain acts directly on photosensitive circadian pacemaker neurons [25–28]. In mammals, however, this can be discounted because eye removal abolishes photoentrainment [20,23,29–32]. In a recent human study, bright light behind the knee was reported to phase-shift circadian rhythms [33] but these results have not been replicated [20,34–36]. In short, the eyes are necessary for mammalian entrainment but classical photoreceptors are not, strongly implicating a novel ocular photoreceptor in the workings of the retinohypothalamic tract [20,22,37,38].

Melanopsin – a candidate circadian photopigment

A key strategy in the hunt for these enigmatic photoreceptors was to seek candidate photopigments within the inner retina. Attention initially focused on the
cryptochromes, blue-light-absorbing flavoproteins that function as circadian photopigments in invertebrates [38–40]. Despite some evidence supporting an equivalent role in mammals (see following discussion), cryptochromes have been eclipsed, at least momentarily, by melanopsin. This novel vertebrate opsin, discovered by Provencio and colleagues [41,42], gets its name from the cells in which it was first isolated: the dermal melanophores of frog skin. These cells are directly photosensitive, redistributing their pigmented organelles when illuminated. Melanopsin was also found in several other cell types in frogs known or presumed to be intrinsically photosensitive, including myocytes of the iris and cells in hypothalamic regions containing deep-brain photoreceptors. Melanopsin was also detected in certain retinal neurons other than rods and cones [41].

In mammals, melanopsin was found only in the retina and, specifically, in a tiny subset of neurons of the inner retinal layers [42–46]. This distribution was unique among mammalian opsins in matching the presumed inner retinal location of the mysterious circadian photoreceptors. Moreover, the sparseness of the distribution was reminiscent of the RGCs innervating the SCN, leading Provencio and colleagues to propose melanopsin as a circadian photopigment [42]. Support for this hypothesis came swiftly from three studies showing that melanopsin was expressed specifically within retinal ganglion cells of the retinohypothalamic tract [43,45,47]. Apparently, most melanopsin-containing RGCs innervate the SCN and most RGCs innervating the SCN contain melanopsin [43,47].

Intrinsic photosensitivity of ganglion cells innervating the circadian pacemaker

To determine whether ganglion cells innervating the SCN were directly photosensitive, Berson et al. [48] made whole-cell recordings from such cells in isolated rat retinas. Light strongly depolarized the cells, triggering sustained spiking. These responses persisted even when rods and cones were severely photobleached and their synaptic influences on ganglion cells were thoroughly blocked. Most tellingly, the cell bodies of these ganglion cells still responded to light when physically dissociated from the retina. Thus, ganglion cells projecting to the circadian pacemaker are indeed photoreceptors, able to convert electromagnetic radiation into transmembrane receptor potentials. For want of a pithier name, these neurons were called ‘intrinsically photosensitive retinal ganglion cells’ (ipRGCs).

Functional features of ipRGCs

The intrinsic light responses of ipRGCs differ radically from those of rods and cones [48] (Table 1). Light depolarizes ipRGCs but hyperpolarizes rods and cones (Fig. 1a). The ipRGCs are less sensitive than the classical photoreceptors and are far more sluggish, with response latencies as long as one minute (Fig. 1a). Bright continuous illumination evokes a remarkably sustained depolarization in ipRGCs that faithfully encodes stimulus energy. This sets these cells apart from essentially all other mammalian RGCs, which cannot represent ambient light levels in this way [49]. In their classic work on this topic, Barlow and Levick [49] drew attention to a tiny minority of RGCs that were able to encode irradiance, cells they called ‘luminance units’. In retrospect, these seem likely to have been ipRGCs, in which case Barlow and Levick deserve credit for spotlighting these oddities more than three decades before their capacity for phototransduction was recognized.

The action spectrum (or wavelength-sensitivity function) for synaptically isolated ipRGCs is typical of a vitamin-A-based photopigment, as are the action spectra for rods and cones (Fig. 1b). This strongly suggests that the responsible pigment is an opsin. However, ipRGCs are most sensitive at 484 nm, whereas rat rods prefer ~500 nm [50] and rat cones are most sensitive at either 510 nm or 359 nm [51]. Thus, a novel opsin drives ipRGC light responses. Melanopsin, which is present in physiologically identified ipRGCs [45], is by far the most likely candidate, as discussed in a following section.

Congruence of ipRGC light responses with properties of the photoentrainment mechanism

Many of the distinctive features of the light responses of ipRGCs parallel the unusual properties of circadian photoentrainment. By comparison with pattern vision, the photoentrainment mechanism is insensitive and responds poorly to brief stimuli, but is able to integrate photic energy over much longer periods [14,15,18,52]. These characteristics seem likely to reflect in part the high thresholds and sluggish, tonic responses of ipRGCs, although the quantitative discrepancies

Table 1. Contrasting structural and functional features of conventional photoreceptors (rods and cones) and novel ganglion cell photoreceptors (ipRGCs) of the mammalian retina*

<table>
<thead>
<tr>
<th>Soma location</th>
<th>Action potentials</th>
<th>Light response</th>
<th>Output</th>
<th>Role of retinal pigment epithelium</th>
<th>Sensitivity</th>
<th>Receptive field</th>
<th>Photopigment</th>
<th>Photosensitive elements</th>
<th>Refs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rods and cones</td>
<td>ipRGCs</td>
<td>Ganglion cell layer (rarely inner nuclear layer)</td>
<td>Brain (e.g. SCN and OPN)</td>
<td>Fast hyperpolarizing</td>
<td>Yes</td>
<td>Moderate (cone) or high (rod)</td>
<td>Rhodopsin and cone opsin</td>
<td>Outer segment</td>
<td>[42–47]</td>
</tr>
<tr>
<td>Rods and cones</td>
<td>ipRGCs</td>
<td>Ganglion cell layer (rarely inner nuclear layer)</td>
<td>Brain (e.g. SCN and OPN)</td>
<td>Fast hyperpolarizing</td>
<td>Yes</td>
<td>Moderate (cone) or high (rod)</td>
<td>Rhodopsin and cone opsin</td>
<td>Outer segment</td>
<td>[42–47]</td>
</tr>
<tr>
<td>Rods and cones</td>
<td>ipRGCs</td>
<td>Ganglion cell layer (rarely inner nuclear layer)</td>
<td>Brain (e.g. SCN and OPN)</td>
<td>Fast hyperpolarizing</td>
<td>Yes</td>
<td>Moderate (cone) or high (rod)</td>
<td>Rhodopsin and cone opsin</td>
<td>Outer segment</td>
<td>[42–47]</td>
</tr>
<tr>
<td>Rods and cones</td>
<td>ipRGCs</td>
<td>Ganglion cell layer (rarely inner nuclear layer)</td>
<td>Brain (e.g. SCN and OPN)</td>
<td>Fast hyperpolarizing</td>
<td>Yes</td>
<td>Moderate (cone) or high (rod)</td>
<td>Rhodopsin and cone opsin</td>
<td>Outer segment</td>
<td>[42–47]</td>
</tr>
<tr>
<td>Rods and cones</td>
<td>ipRGCs</td>
<td>Ganglion cell layer (rarely inner nuclear layer)</td>
<td>Brain (e.g. SCN and OPN)</td>
<td>Fast hyperpolarizing</td>
<td>Yes</td>
<td>Moderate (cone) or high (rod)</td>
<td>Rhodopsin and cone opsin</td>
<td>Outer segment</td>
<td>[42–47]</td>
</tr>
<tr>
<td>Rods and cones</td>
<td>ipRGCs</td>
<td>Ganglion cell layer (rarely inner nuclear layer)</td>
<td>Brain (e.g. SCN and OPN)</td>
<td>Fast hyperpolarizing</td>
<td>Yes</td>
<td>Moderate (cone) or high (rod)</td>
<td>Rhodopsin and cone opsin</td>
<td>Outer segment</td>
<td>[42–47]</td>
</tr>
<tr>
<td>Rods and cones</td>
<td>ipRGCs</td>
<td>Ganglion cell layer (rarely inner nuclear layer)</td>
<td>Brain (e.g. SCN and OPN)</td>
<td>Fast hyperpolarizing</td>
<td>Yes</td>
<td>Moderate (cone) or high (rod)</td>
<td>Rhodopsin and cone opsin</td>
<td>Outer segment</td>
<td>[42–47]</td>
</tr>
<tr>
<td>Rods and cones</td>
<td>ipRGCs</td>
<td>Ganglion cell layer (rarely inner nuclear layer)</td>
<td>Brain (e.g. SCN and OPN)</td>
<td>Fast hyperpolarizing</td>
<td>Yes</td>
<td>Moderate (cone) or high (rod)</td>
<td>Rhodopsin and cone opsin</td>
<td>Outer segment</td>
<td>[42–47]</td>
</tr>
<tr>
<td>Rods and cones</td>
<td>ipRGCs</td>
<td>Ganglion cell layer (rarely inner nuclear layer)</td>
<td>Brain (e.g. SCN and OPN)</td>
<td>Fast hyperpolarizing</td>
<td>Yes</td>
<td>Moderate (cone) or high (rod)</td>
<td>Rhodopsin and cone opsin</td>
<td>Outer segment</td>
<td>[42–47]</td>
</tr>
<tr>
<td>Rods and cones</td>
<td>ipRGCs</td>
<td>Ganglion cell layer (rarely inner nuclear layer)</td>
<td>Brain (e.g. SCN and OPN)</td>
<td>Fast hyperpolarizing</td>
<td>Yes</td>
<td>Moderate (cone) or high (rod)</td>
<td>Rhodopsin and cone opsin</td>
<td>Outer segment</td>
<td>[42–47]</td>
</tr>
<tr>
<td>Rods and cones</td>
<td>ipRGCs</td>
<td>Ganglion cell layer (rarely inner nuclear layer)</td>
<td>Brain (e.g. SCN and OPN)</td>
<td>Fast hyperpolarizing</td>
<td>Yes</td>
<td>Moderate (cone) or high (rod)</td>
<td>Rhodopsin and cone opsin</td>
<td>Outer segment</td>
<td>[42–47]</td>
</tr>
<tr>
<td>Rods and cones</td>
<td>ipRGCs</td>
<td>Ganglion cell layer (rarely inner nuclear layer)</td>
<td>Brain (e.g. SCN and OPN)</td>
<td>Fast hyperpolarizing</td>
<td>Yes</td>
<td>Moderate (cone) or high (rod)</td>
<td>Rhodopsin and cone opsin</td>
<td>Outer segment</td>
<td>[42–47]</td>
</tr>
<tr>
<td>Rods and cones</td>
<td>ipRGCs</td>
<td>Ganglion cell layer (rarely inner nuclear layer)</td>
<td>Brain (e.g. SCN and OPN)</td>
<td>Fast hyperpolarizing</td>
<td>Yes</td>
<td>Moderate (cone) or high (rod)</td>
<td>Rhodopsin and cone opsin</td>
<td>Outer segment</td>
<td>[42–47]</td>
</tr>
<tr>
<td>Rods and cones</td>
<td>ipRGCs</td>
<td>Ganglion cell layer (rarely inner nuclear layer)</td>
<td>Brain (e.g. SCN and OPN)</td>
<td>Fast hyperpolarizing</td>
<td>Yes</td>
<td>Moderate (cone) or high (rod)</td>
<td>Rhodopsin and cone opsin</td>
<td>Outer segment</td>
<td>[42–47]</td>
</tr>
<tr>
<td>Rods and cones</td>
<td>ipRGCs</td>
<td>Ganglion cell layer (rarely inner nuclear layer)</td>
<td>Brain (e.g. SCN and OPN)</td>
<td>Fast hyperpolarizing</td>
<td>Yes</td>
<td>Moderate (cone) or high (rod)</td>
<td>Rhodopsin and cone opsin</td>
<td>Outer segment</td>
<td>[42–47]</td>
</tr>
<tr>
<td>Rods and cones</td>
<td>ipRGCs</td>
<td>Ganglion cell layer (rarely inner nuclear layer)</td>
<td>Brain (e.g. SCN and OPN)</td>
<td>Fast hyperpolarizing</td>
<td>Yes</td>
<td>Moderate (cone) or high (rod)</td>
<td>Rhodopsin and cone opsin</td>
<td>Outer segment</td>
<td>[42–47]</td>
</tr>
<tr>
<td>Rods and cones</td>
<td>ipRGCs</td>
<td>Ganglion cell layer (rarely inner nuclear layer)</td>
<td>Brain (e.g. SCN and OPN)</td>
<td>Fast hyperpolarizing</td>
<td>Yes</td>
<td>Moderate (cone) or high (rod)</td>
<td>Rhodopsin and cone opsin</td>
<td>Outer segment</td>
<td>[42–47]</td>
</tr>
</tbody>
</table>

*Abbreviations: ipRGCs, intrinsically photosensitive retinal ganglion cells; OPN, olivary pretectal nucleus; SCN, suprachiasmatic nucleus

References are those for data on ipRGCs. The characteristics of rods and cones are well documented; for reviews, see Refs [89,90]
between behavioral and cellular thresholds complicate this picture [17,48,53].

The action spectrum for circadian phase-shifting implicates an opsin-based photopigment. In wild-type rodents, sensitivity peaks near 500 nm [16,54,55], closer to the optimal wavelength for rods and longer-wavelength ('green') cones than to that of ipRGCs (Fig. 1b). In at least one strain of retinal degenerate (rd/rd) mice, however, the optimal wavelength shifts to 480 nm [55], closely matching the best wavelength for ipRGCs. These results support the view that ipRGCs are circadian photoreceptors that sustain photoentrainment in rodless and coneless mice. At the same time, they imply that, under normal conditions, classical photoreceptors also help to synchronize the clock. This is consonant with evidence that rods and cones drive SCN neurons [56] and that light continues to affect circadian phase, albeit less effectively, when the direct photosensitivity of ipRGCs is eliminated by knock-out of melanopsin [53,57,58].

Is melanopsin the photopigment of intrinsically photosensitive ganglion cells?

At present, melanopsin is by far the best candidate for the ipRGC photopigment. This opsin protein is found in, and perhaps only within, these novel photoreceptors [43,45,47]. It is located not only in their cell bodies but also in their proximal axons and throughout their dendrites [43,45,46]. This satisfies an important criterion for the photopigment in ipRGCs, because their dendrites are independently photosensitive [48]. Perhaps most tellingly, genetic deletion of melanopsin eliminates the intrinsic light response of ipRGCs without altering their structure or projections [53]. Melanopsin knockout also alters behavioral light responses to which ipRGCs are
believed to contribute [53,57,58]. In short, melanopsin is in the right cells, in the right parts of those cells, and has to be there if they are to respond directly to light.

This evidence, although strong, does not conclusively establish melanopsin as the photopigment of ipRGCs. One significant gap in the chain of evidence is the absorption spectrum of melanopsin, which is presently unknown. This must match the action spectrum of ipRGCs if their photopigment is melanopsin. Also lacking is evidence for an intracellular signaling pathway coupling melanopsin to the light-activated ion channels in the ipRGC plasma membrane. Indeed, virtually nothing is yet known about this phototransduction cascade. An invertebrate-like phosphoinositide signaling pathway might be involved because melanopsin structurally resembles invertebrate opsins [41,42], and ipRGCs, like most invertebrate photoreceptors, depolarize in response to light. Alternatively, a cyclic-nucleotide cascade such as that used by vertebrate photoreceptors, or some other signaling pathway, might be operating.

A competing hypothesis is that melanopsin is not a photopigment at all but, instead, is a retinaldehyde photoisomerase. In this view, melanopsin would be essential for regenerating the chromophore of another, unidentified opsin photopigment [59]. As yet, however, there is no evidence that melanopsin has isomerase activity or that ipRGCs contain any other opsin. Only three mammalian opsins have been identified outside the rods and cones: retinal G-protein-coupled receptor (RGR), peropsin and encephalopsin [60–63]. None of these has been identified in ipRGCs or other inner retinal neurons [42,60]. Vertebrate ancient opsin, found in the inner retina of fish [64], has not been identified in mammals.

The direct photosensitivity of ipRGCs, which requires melanopsin, appears sufficient to drive various non-image-forming visual functions in the absence of rods and cones (see following discussion). This should not be taken to mean that melanopsin is required for these functions. Indeed, circadian photoentrainment and phase-shifting, masking and pupillary light reflexes all persist in melanopsin-knockout mice [53,57,58]. Thus, multiple photoreceptor types must contribute to these mechanisms.

Cryptochromes, which are flavoproteins related to the photolyases, have also been proposed as mammalian circadian photopigments [39,40,65]. There is a precedent for such a role in Drosophila, where cryptochromes mediate direct photic modulation of the circadian pacemaker [2,38,66,67]. In mammals, there are two cryptochromes. These are widely expressed in the body, including in most cells of the inner retina [65], so they could well be present in ipRGCs. If cryptochromes form functional photopigments in mammals, which remains uncertain, their chromophore would presumably be flavin adenine nucleotide and/or a pterin, and not retinaldehyde as in the opsins [40]. Accordingly, cryptochromes have been proposed to support the photic influence on the SCN that persists in the face of severe depletion of retinaldehyde [68]. However, it is doubtful that a flavin-based photopigment could account for the opsin-like action spectrum of ipRGCs [69]. Furthermore, cryptochromes are located mainly within the nucleus, so it is unclear whether they can account for the photosensitivity of ipRGC dendrites. It has proven difficult to determine whether cryptochromes contribute to circadian photoentrainment because they are crucial clock components and knocking them out disrupts circadian rhythmicity [70–72]. Knockout studies have revealed that cryptochrome deletion can disrupt, but does not abolish, photic induction of SCN clock genes [2,71,72] and reduces the sensitivity of pupillary light responses in retinal degenerate mice [73].

Morphology of ipRGCs

In rodents, ~1000–2000 ganglion cells (~1–3% of all ganglion cells) contain melanopsin [45]. Most reside in the ganglion cell layer but a few are displaced to the inner nuclear layer [37,42,45]. Melanopsin-positive RGCs are present throughout the retina, with somewhat higher density superiority [43,45]. Their dendrites form an extensively overlapping plexus in the inner plexiform layer (IPL) [37,45,46]. Dendritic profiles of individual melanopsin-positive RGCs (or ipRGCs) are large (Fig. 1c and e), spanning ~500 μm or 15° [48]; for comparison, rod and cone outer segments span ~1 μm or <0.05°. The large fields of ipRGCs initiate a process of spatial convergence that culminates in the huge receptive fields of SCN neurons [74].

The dendrites of ipRGCs arborize mainly in the outermost sublayer of the IPL (Fig. 1d), corresponding to the main plexus of melanopsin-immunoreactive dendrites [37,45,46,48]. In mice, however, a second plexus of melanopsin-positive dendrites marks the innermost IPL [46]. It is not known whether this plexus arises from a second population of RGCs and, if so, whether these cells, too, are directly photosensitive. Melanopsin-expressing RGCs also selectively express pituitary-adenylate-cyclase-activating peptide (PACAP), which might participate in retinohypothalamic transmission [37,43].

Intraretinal synaptic modulation: influences of rods and cones

The dendrites of ipRGCs serve, like rod and cone outer segments, as sites of phototransduction. In addition, however, they also play a role more typical of ganglion-cell dendrites, as targets of synaptic input from amacrine and bipolar cells (Fig. 1d). Rods or cones drive brisk, synaptically mediated excitatory ON responses in some ipRGCs when recorded under appropriate conditions [46]. It is not known whether this plexus arises from a second population of RGCs and, if so, whether these cells, too, are directly photosensitive. Melanopsin-expressing RGCs also selectively express pituitary-adenylate-cyclase-activating peptide (PACAP), which might participate in retinohypothalamic transmission [37,43].

Beyond circadian entrainment: other functional roles of ipRGCs

Intrinsically photosensitive RGCs appear to contribute to photic regulation of pineal melatonin release. Light at
night suppresses otherwise high nocturnal plasma melatonin levels through a circuitous pathway originating with the retinohypothalamic tract [77] (Fig. 2). Such photic melatonin suppression persists in rodless and coneless mice and in some blind people [29,78], and its action spectrum bears some resemblance to that of ipRGCs [79,80]. Changes in day length act through this pathway to regulate the melatonin duty cycle and thereby drive seasonal (photoperiodic) changes in reproductive and other physiological functions [81]. In some people, short days precipitate seasonal affective disorder (‘winter blues’). The ipRGCs might be key targets of the bright-light therapy used to treat this condition [82].

Light also acutely inhibits night-time locomotor activity in nocturnal rodents (‘negative circadian masking’). This photic effect, which is probably mediated by the retinohypothalamic tract [77] (Fig. 2), Such photic melatonin suppression persists in rodless and coneless mice and in some blind people [29,78], and its action spectrum bears some resemblance to that of ipRGCs [79,80]. Changes in day length act through this pathway to regulate the melatonin duty cycle and thereby drive seasonal (photoperiodic) changes in reproductive and other physiological functions [81]. In some people, short days precipitate seasonal affective disorder (‘winter blues’). The ipRGCs might be key targets of the bright-light therapy used to treat this condition [82].

The pupillary light reflex is also driven in part by ipRGCs. The olivary pretectal nucleus (OPN) is a crucial node in this reflex circuit, linking the retina to the parasympathetic innervation of the iris (Fig. 2). Melanopsin-expressing RGCs project directly to the OPN [45], indicating that multiple photoreceptors must be involved. Other hypothalamic outputs of ipRGCs might contribute to photic effects on sleep, heart rate, cortisol levels and alertness [13].

The pupillary light reflex is also driven in part by ipRGCs. The olivary pretectal nucleus (OPN) is a crucial node in this reflex circuit, linking the retina to the parasympathetic innervation of the iris (Fig. 2). Melanopsin-expressing RGCs project directly to the OPN [45], indicating that multiple photoreceptors must be involved. Other hypothalamic outputs of ipRGCs might contribute to photic effects on sleep, heart rate, cortisol levels and alertness [13].

Concluding remarks
Recent findings have identified a novel photoreceptor of the mammalian retina. The ipRGC is a rare type of ganglion cell with distinctive morphological and functional features. This photoreceptor appears to sacrifice spatial and temporal resolution so as to encode faithfully the intensity of bright environmental illumination. It plays a key role in diverse physiological responses to daylight, including setting the biological clock, regulating activity and melatonin levels, and adjusting pupil diameter. It can maintain these responses when classical photoreceptors are lost. Melanopsin is very probably the photopigment for this novel photoreceptor, although gaps in the chain of evidence remain. This system appears highly conserved evolutionarily and is clearly present in humans.

Almost nothing is known about the signaling cascade that couples photopigment activation to the voltage response, and this will be a major research focus in the future. It will also be important to explore in far greater

http://tins.trends.com
detail the light responses of these cells under physiological conditions in which interactions with rods and cones are preserved. A fuller account of the central projections and influences of these ganglion cells is of key importance in understanding the functional roles of this highly specialized and idiosyncratic component of the mammalian visual system.

Acknowledgements

I am grateful to many colleagues for helpful discussions, especially to Felice Dunn, Motoharu Takao, Ignacio Provencio, Mark Rollag, King-Wai Yau, Samer Hattar and Russell Van Gelder. I thank Russell Van Gelder and anonymous referees for their critiques of the manuscript. The intracellular fill illustrated in Fig. 1(e) was generated by Felice Dunn. Supported by NIH grant R01 EY12790.

References

24 Lucas, R.J. et al. (2001) Identifying the photoreceptive inputs to the mammalian circadian system using transgenic and retina-deficient mice. Behav. Brain Res. 125, 97–102
discharge with adaptation level in the cat retina. J. Physiol. 202, 699–718
71 Okamura, H. et al. (1999) Photic induction of mPer1 and mPer2 in cry-deficient mice lacking a biological clock. Science 286, 2531–2534
77 Moore, R.Y. (1996) Neural control of the pineal gland. Behav. Brain Res. 73, 125–130
78 Lucas, R.J. et al. (1999) Regulation of the mammalian pineal by non-rod, non-cone, ocular photoreceptors. Science 284, 505–507

Mouse Knockout & Mutation Database
Established in 1995, the Mouse Knockout & Mutation Database (MKMD; http://research.bmnn.com/mkmd) is BioMedNet’s fully searchable database of phenotypic information related to knockout and classical mutations in mice. MKMD offers over 7000 entries and includes a new reviews section on mouse models of human diseases and up-to-date fact files for all disease reviews.